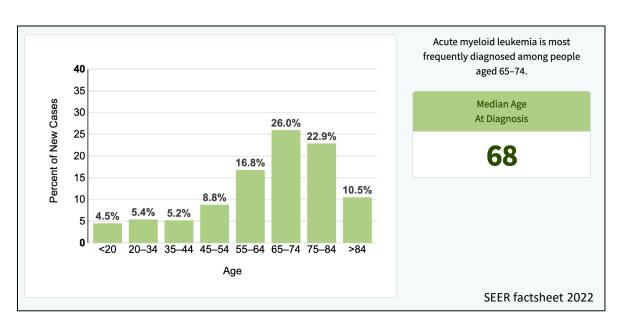


Acute Leukemia Review January 2024

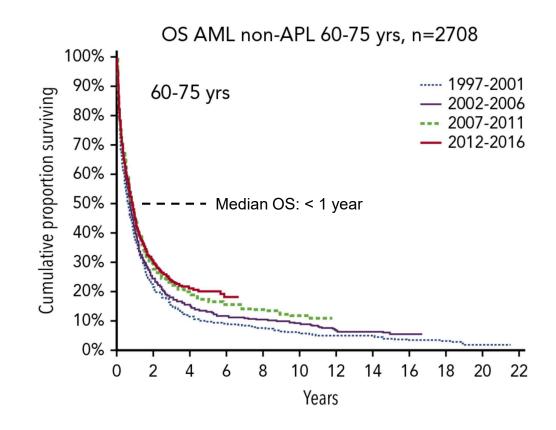
Curtis Lachowiez, M.D.

Assistant Professor
Knight Cancer Institute
Oregon Health & Science University

Conflict of interest

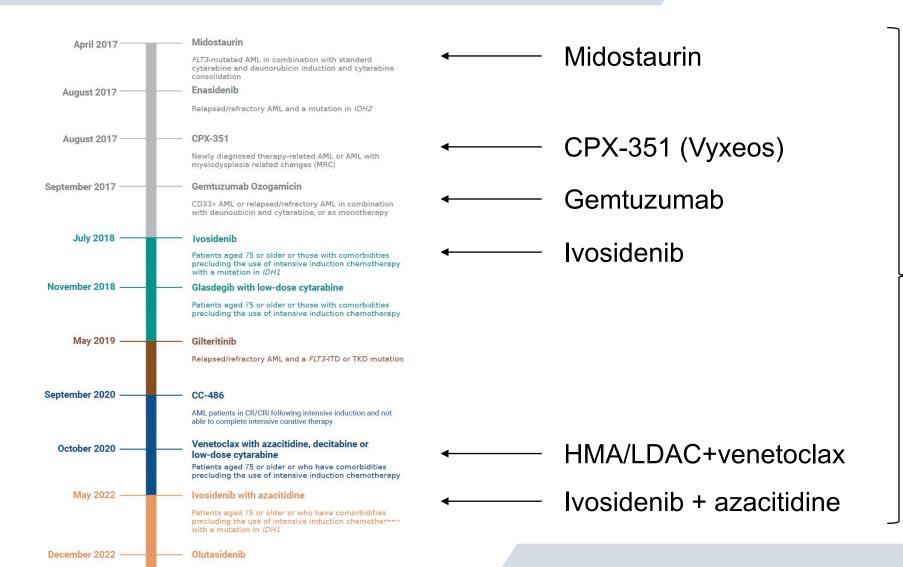

Consultancy: COTA Healthcare

Advisory board: AbbVie, Rigel, Servier

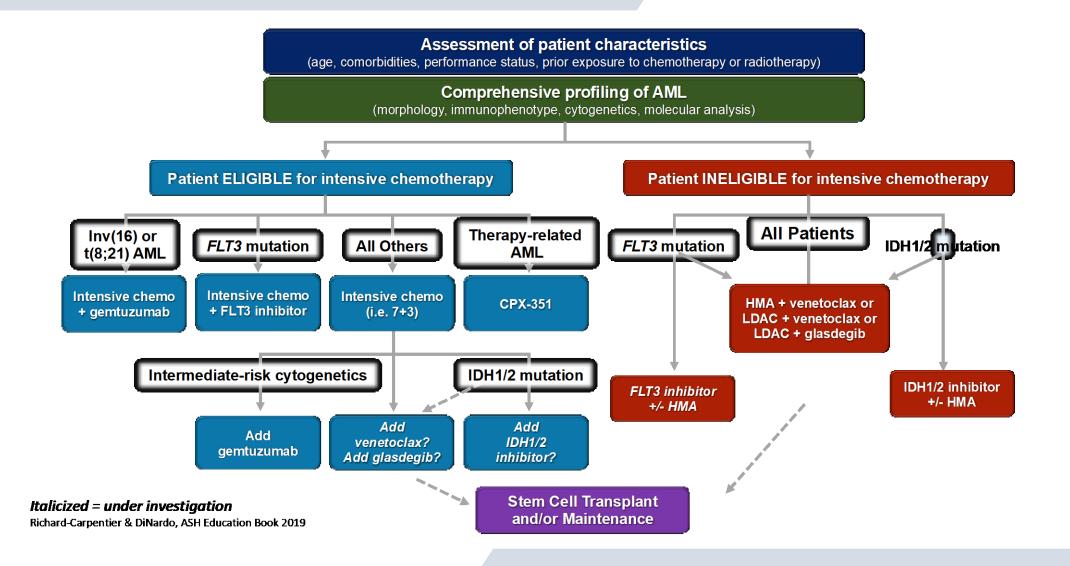


Epidemiology

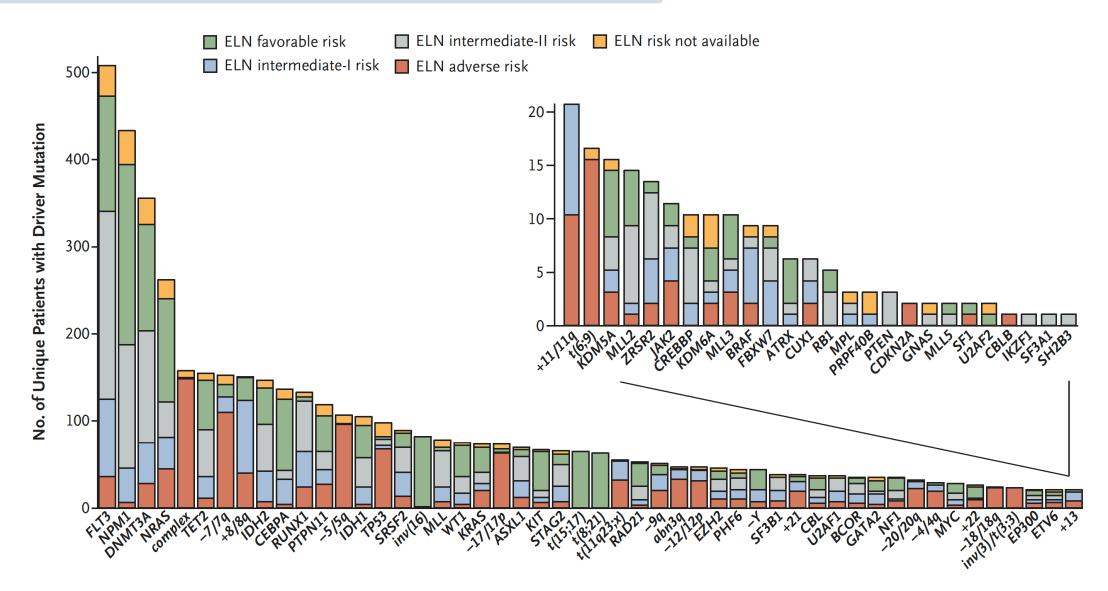
Acute myeloid leukemia is an aggressive hematologic malignancy in older adults


Overall survival in older (i.e., most) patients treated with intensive chemotherapy remains poor

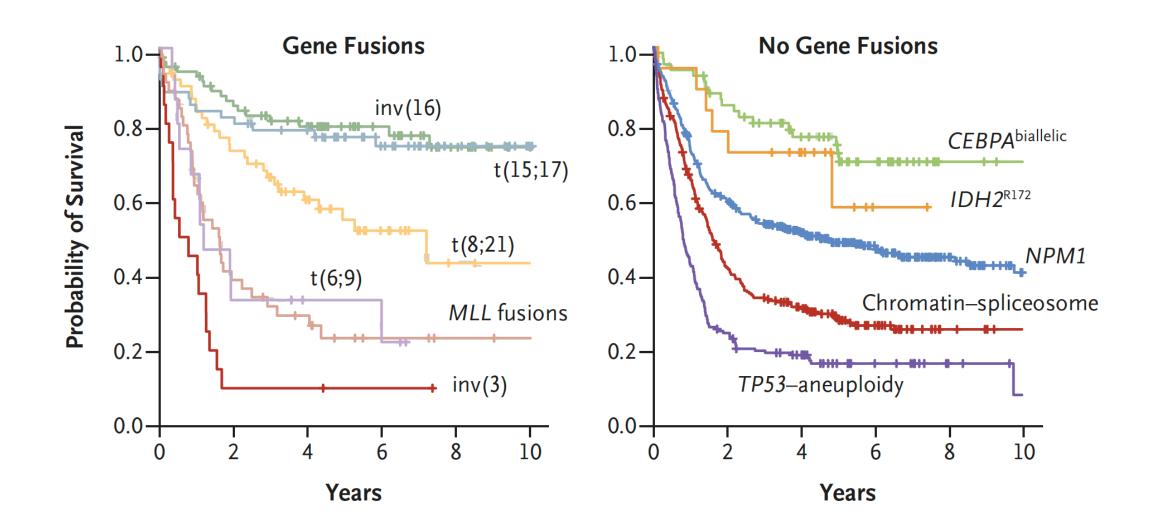
Standard of care targeted options


Relapsed/Refractory AML and a mutation in IDH1

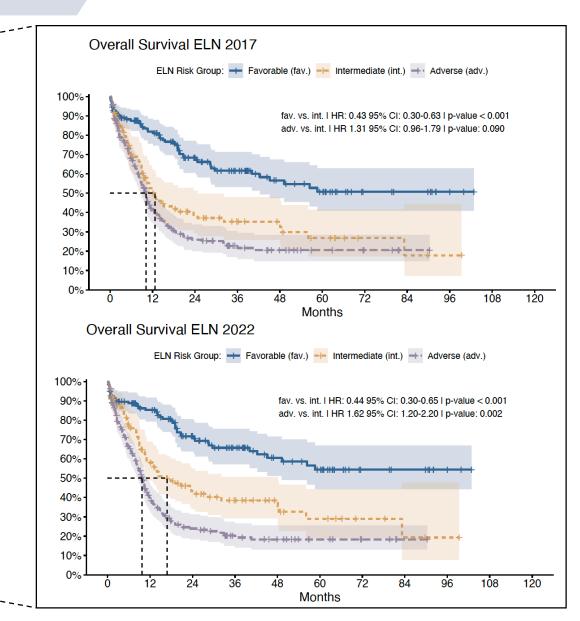
Frontline options (recent addition: quizartinib in *FLT3*-ITD mutated AML)



AML Treatment approach



Prognostication: Genomic landscape


Prognostication: Genomic landscape

ELN 2022: A step forward...

Risk category†	Genetic abnormality
Favorable	 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1†,‡ inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/ CBFB::MYH11†,‡ Mutated NPM1†,\$ without FLT3-ITD bZIP in-frame mutated CEBPA
Intermediate	 Mutated NPM1†,§ with FLT3-ITD Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3)/MLLT3::KMT2A†,¶ Cytogenetic and/or molecular abnormalities not classified as favorable or adverse
Adverse	 t(6;9)(p23.3;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged# t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11.2;p13.3)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,** monosomal karyotype†† Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or ZRSR2‡‡ Mutated TP53a

AML Prognosis: Intensive chemotherapy

Influence of Bone Marrow Blast Enumeration and Co-Occurring Myelodysplasia Related Gene Mutations in *NPM1*-Mutated Myeloid Malignancies

Curtis A Lachowiez, MD¹, Georgios Asimomitis²,³, Elsa Bernard, PhD², Ivory Tang⁴, Yanis Tazi, MSc, BSc⁴, Amanda Gilkes⁵, Ian Thomas⁶, Lars Bullinger⁶, Konstanze Döhner⁶, Hartmut Dohner, MD⁶, Brian Huntly, PhD¹o,¹¹, Nigel H. Russell, MD¹², Sanam Loghavi, MD¹³*, and Elli Papaemmanuil¹⁵*

¹Knight Cancer Institute, Oregon Health & Science University, Portland, OR, ²Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, ³Biomedical Systems Laboratory, Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece, ⁴Memorial Sloan Kettering Cancer Center, New York, NY, ⁵Cardiff University, Cardiff, GBR, ⁶Cardiff University, Cardiff, United Kingdom, ⁸Charité Universitätsmedizin Berlin, Berlin, Germany, ⁹Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany, ¹⁰Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom, ¹¹Cambridge Institute For Medical Research, University of Cambridge, Cambridge, GBR, ¹²Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom, ¹³Department of hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, ¹⁵Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY. *Indicates dual senior authors

Background: Unanswered questions in NPM1-mutated MN

WHO 5th edition and ICC/ELN guidelines differ for definition of *NPM1*-mutated AML^{5,6}

WHO 5th: blasts \geq 5% ELN/ICC: blasts ≥ 10% NPM1-mutated AML

Does blast enumeration impact LFS and OS in *NPM1*-mutated myeloid neoplasms?

Myelodysplasia (MR) associated gene mutations currently considered adverse-risk prognostic markers unless occurring with *NPM1*⁶

Risk category†	Genetic abnormality
Favorable	 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1†,‡ inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/ CBFB::MYH11†,‡ Mutated NPM1†,§ without FLT3-ITD bZIP in-frame mutated CEBPA
Intermediate	 Mutated NPM1†,§ with FLT3-ITD Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3)/MLLT3::KMT2A†,¶ Cytogenetic and/or molecular abnormalities not classified as favorable or adverse
Adverse	 t(6;9)(p23.3;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged# t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11.2;p13.3)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,** monosomal karyotype†† Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or ZRSR2‡‡ Mutated TP53a

Do MR-gene mutations impact outcomes when associated with a co-occurring *NPM1* mutation?

Study design: Blast enumeration and MR mutations in NPM1-mutated MN

NPM1-mutated MN cohort

International Working Group for Prognosis in MDS cohort⁷ (N=3,323)

Pathogenic/likely-pathogenic *NPM1* mutation (N=38)

Blasts < 10% (N=20)

Blasts 10-19% (N=18)

Clinical demographics

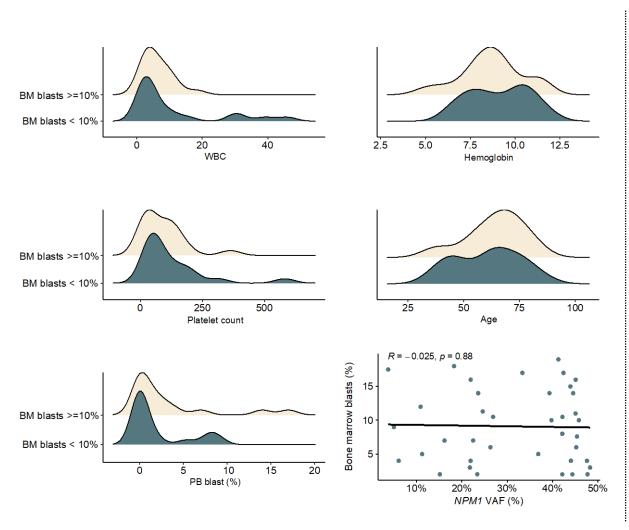
Molecular landscape

Leukemia-free and overall survival

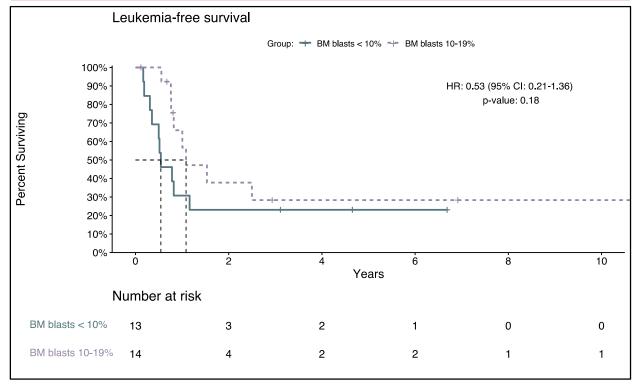
NPM1-mutated AML cohorts

UK National Cancer Research Institute & AML Study
Group Cohorts⁸
(N=3,653)

Pathogenic/likely-pathogenic *NPM1* mutation (N=1,093)

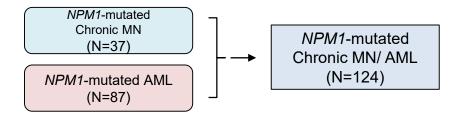

MR wild-type (N=935) MR mutated (N=158)

Clinical demographics

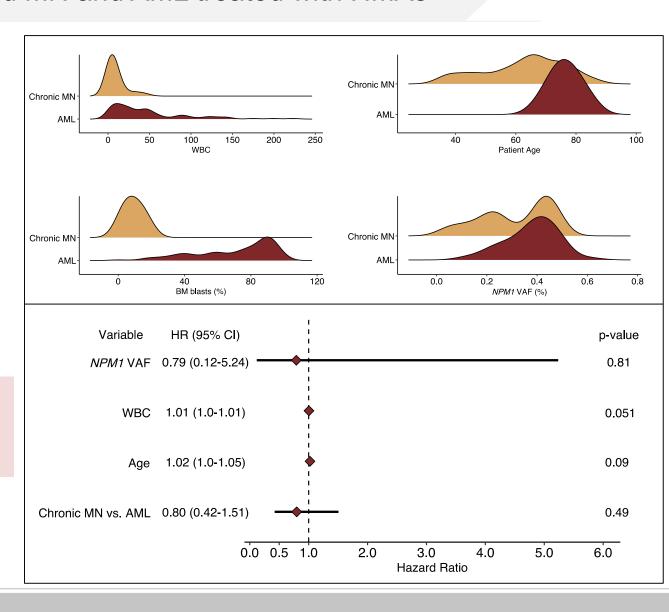

Clonal hierarchy of co-mutations

Overall survival

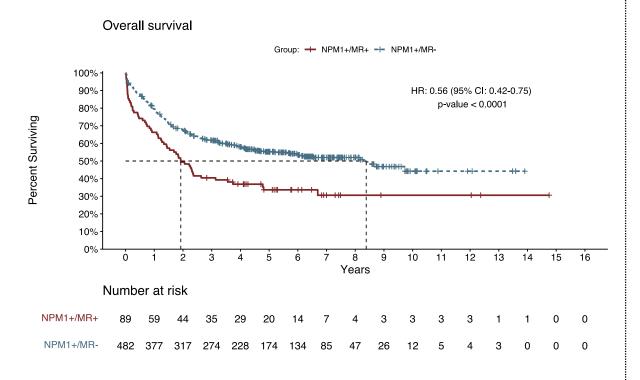
Results: Blast enumeration and MR mutations in NPM1-mutated MN



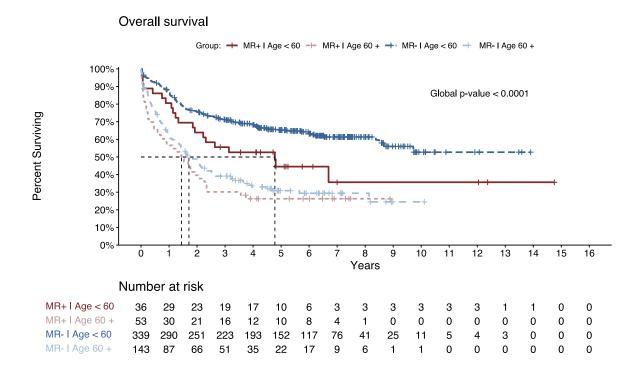
In patients with MN and blasts < 20%, no significant difference was observed with respect to clinical or hematologic parameters between patients with blasts < 10% vs. 10-19%.


Results: Similar survival in *NPM1*-mutated MN and AML treated with HMAs

Comparative cohort of *NPM1*-mutated MN vs. *NPM1*-mutated AML treated with lower intensity therapy

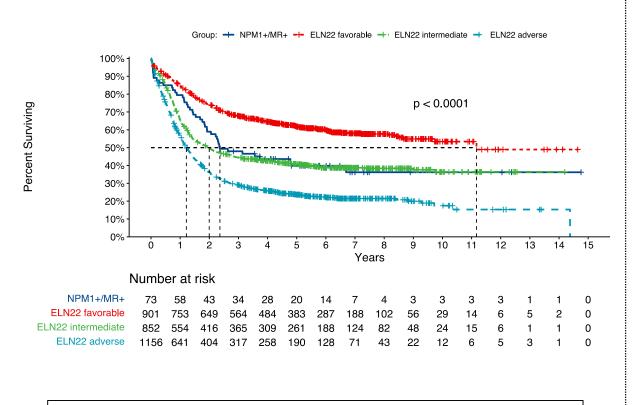

After adjustment for baseline variables, OS did not significantly differ between patients with NPM1-mutated MN vs. AML

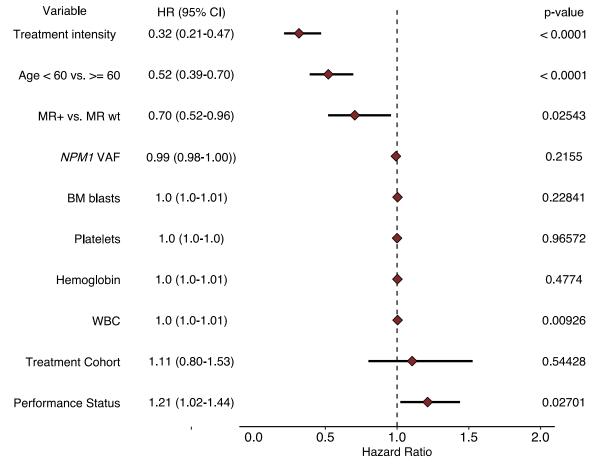
Median OS: 0.3 vs. 1.1 years, p-value: 0.49


Results: Inferior survival observed with MR mutations in ELN favorable-risk AML

In patients with ELN 2022 favorable-risk AML, co-mutations in MR mutations were associated with inferior survival

Median OS: 1.9 vs. 8.8 years, p-value < 0.0001


Inferior survival largely appeared driven by MR mutations in younger (age < 60) patients with AML

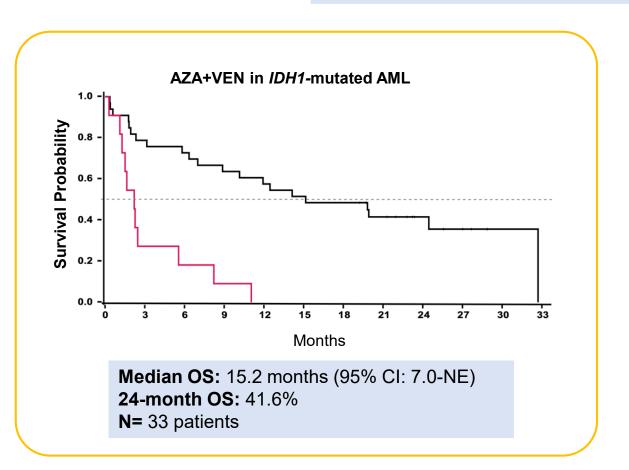

Median OS: 4.8 vs. NR, global p-value < 0.0001

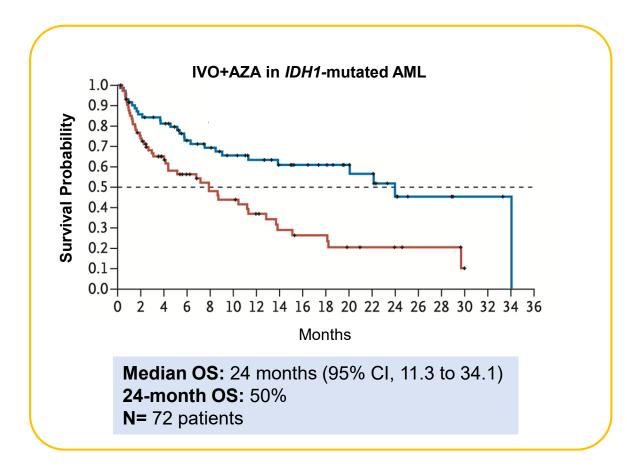
Results: Inferior survival observed with MR mutations in ELN favorable-risk AML

Patients with mutations in MR genes and *NPM1* have survival similar to ELN 2022 intermediate risk AML when treated with intensive chemotherapy without venetoclax

Co-occurring MR mutations independently associated with inferior OS in ELN favorable-risk *NPM1*-mutated AML

Median OS: 2.4 vs. 2.0 years




AML Treatment: Lower intensity therapy

Doublet combinations

AZA+VEN and IVO+AZA both active in IDH1-mutated AML

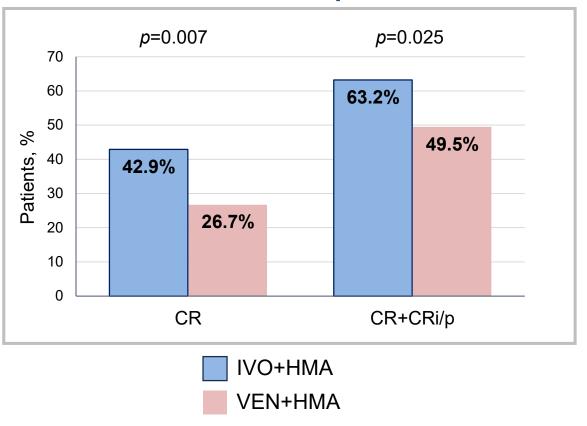
Key questions:

- 1. Improved outcomes with sequencing or combined therapy?
- 2. AE profile of combinations?
- 3. Durability of response?

A Comparison of Acute Myeloid Leukemia Regimens: Hypomethylating Agents Combined with Ivosidenib or Venetoclax in Newly Diagnosed Patients with IDH1 Mutations – A Real-World Evidence Study

B. Douglas Smith¹, Curtis A. Lachowiez², Alexander Joseph Ambinder¹, Gary Binder³, Anne Angiolillo³, Assaf Vestin³, Robert Paglia³, Ravi Potluri⁴, Eros Papademetriou⁴, Thomas W. LeBlanc⁵

¹Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; ²Knight Cancer Institute, Oregon Health & Science University, Portland, OR; ³Servier Pharmaceuticals LLC, Boston, MA; ⁴Putnam Associates, Boston, MA; ⁵Duke Cancer Center, Durham, NC


Results – Baseline Characteristics

	Ov	<u>erall</u>	Ivosidenib	with HMA	<u>Venetocla</u>	x with HMA	D volue
	n	%	n	<u></u> %	n	%	P value
Total	283	100.0%	182	100.0%	101	100.0%	
ECOG Performance score							
0 - 1	215	76.0%	143	78.6%	72	71.3%	0.169
2 - 4	68	24.0%	39	21.4%	29	28.7%	
ELN cytogenetic risk status							
Favorable	58	20.5%	45	24.7%	13	12.9%	0.026‡
Intermediate	169	59.7%	103	56.6%	66	65.3%	
Poor	43	15.2%	29	15.9%	14	13.9%	
Not assessed	13	4.6%	5	2.7%	8	7.9%	
Disease history							
MDS	66	23.3%	41	22.5%	25	24.8%	0.530
Myeloproliferative neoplasms (MPN)	25	8.8%	19	10.4%	6	5.9%	
Secondary AML	9	3.2%	7	3.8%	2	2.0%	
Secondary AML-like mutations	5	1.8%	4	2.2%	1	1.0%	

[†]P-value from a Chi-Squared test for categorical variables, Kruskal-Wallis for continuous variables. [‡]Indicates statistical significance.

Results – Treatment Response

Treatment Responses

- Median time to best response:
 - IVO+HMA = 3.3 mos
 - VEN+HMA = 4.1 mos (p=0.02)
- Median time to first bone marrow biopsy on treatment across cohorts was 56 days

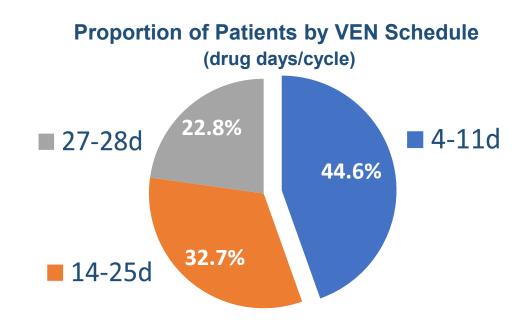
Results - Bridge to Transplant and Event-free Survival

	IVO+HMA	VEN+HMA	P Value
Bridge to Allogenic Transplant	11.5%	5.0%	0.066
Event-Free Survival* (6 mos EFS)	56.0%	39.6%	0.044
Hazard Ratio = 0.773			

^{*} Defined as CR within 24 weeks, and no relapse or death

^{*} Bridge to Transplant was considered a competing risk

Results – Safety


Adverse Events	<u>Ivosideni</u>	b with HMA	<u>Venetoclax</u>	with HMA	P value
Adverse Events	n	%	n	%	P value
n	182	100.0%	101	100.0%	
Adverse Event					
Febrile neutropenia (Grade 3+)	20	11.0%	13	12.9%	0.636
Sepsis	8	4.4%	3	3.0%	0.552
Infection (Grade 3+)	15	8.2%	11	10.9%	0.460
Pneumonia (Grade 3+)	6	3.3%	5	5.0%	0.490
Neutropenia (Grade 3+)	21	11.5%	10	9.9%	0.673
Thrombocytopenia (Grade 3+)	24	13.2%	10	9.9%	0.415
Leukocytosis (Grade 3+)	7	3.8%	3	3.0%	0.702
Differentiation syndrome	2	1.1%	0	0.0%	0.290
None of above	122	67.0%	69	68.3%	0.825
Adverse Event within 30 days of start of treatment					
Febrile neutropenia (Grade 3+)	3	1.6%	8	7.9%	0.009*

- Incidence of prespecified selected expected Grade 3+ toxicity was similar except for higher febrile neutropenia rates for VEN+HMA vs IVO+HMA within 30 days of initiation (7.9% vs 1.6%; p=0.009)
- Unscheduled acute care was needed for 42.9% of patients receiving IVO+HMA in the first 12 weeks vs 70.3% for VEN+HMA, resulting in a 64% higher relative risk (p<0.001)

Results – Treatment Patterns: Schedule per Cycle

Dose and Schedule Intensity

- Few patients in either cohort changed dose or schedule (apart from planned VEN initial ramp-up)
- Treatment discontinuation was 37% for both regimens
- Due to prior reports of varied treatment schedules for VEN, VEN schedule length per cycle was captured
 - Only 22.8% received the full FDA-approved 28 days of VEN during the 28-day cycles
 - 41.6% received ≤ 7 days of VEN per cycle raising questions about the impact on response

Conclusions

- In a large, balanced cohort of nearly 300 patients with ND ICi mIDH1 AML, patients treated with IVO+HMA had higher rates of CR and CR+CRi/p, achieved CR faster, and had longer EFS compared to those treated with VEN+HMA
- ~ 41% of patients receiving VEN did not receive >7-day schedules, potentially impacting the regimen's efficacy
- Despite the modified schedule of VEN, patients receiving VEN+HMA had higher early incidence of febrile neutropenia and greater need for unscheduled acute care than those receiving IVO+HMA

Triplet combinations

Phase Ib/2 Study of Oral Decitabine/Cedazuridine (ASTX727) and Venetoclax in Combination with the Targeted Mutant *IDH1* Inhibitor Ivosidenib or the Targeted Mutant *IDH2* Inhibitor Enasidenib:

2023 Update

Himachandana Atluri, MD¹, Jillian Mullin, MS², Koichi Takahashi, MD, PhD³, Sanam Loghavi, MD⁴ Abhishek Maiti, MD³, Koji Sasaki, MD³, Naval G. Daver, MD³, Yesid Alvarado, MD³, Naveen Pemmaraju, MD³, Gautam Borthakur, MD³, Danielle Hammond, MD³, Kelly Chien, MD³, Alessandra Ferrajoli, MD³, Nicholas J. Short, MD³, Hussein A. Abbas, MD, PhD³, Elias Jabbour, MD³, Michael Andreeff, MD, PhD³, Farhad Ravandi, MD³, Rebecca S. S. Tidwell, MS⁵, Xuemei Wang, MS⁵, Marina Konopleva, MD⁶, Guillermo Garcia-Manero, MD³, Hagop M. Kantarjian³, Courtney D. DiNardo, MD³

Selection Criteria & Objectives

Selection Criteria

Inclusion Criteria

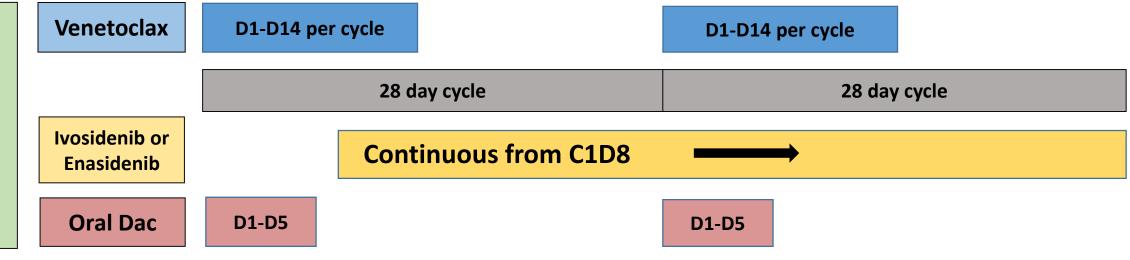
- IDH 1 or 2 mutation
- ND AML not eligible for intensive chemotherapy or R/R AML
- Adequate hepatic (dbili < 2x ULN or ALT/AST < 3x ULN) and renal (Cr < 1.5) function

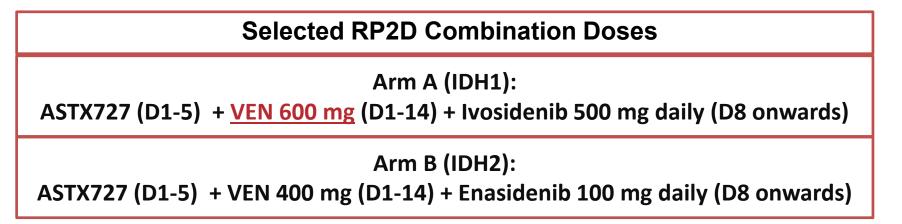
Exclusion Criteria

- Active GvHD or concomitant gastrointestinal disorder preventing medication absorption
- · Active Hepatitis B/C or HIV

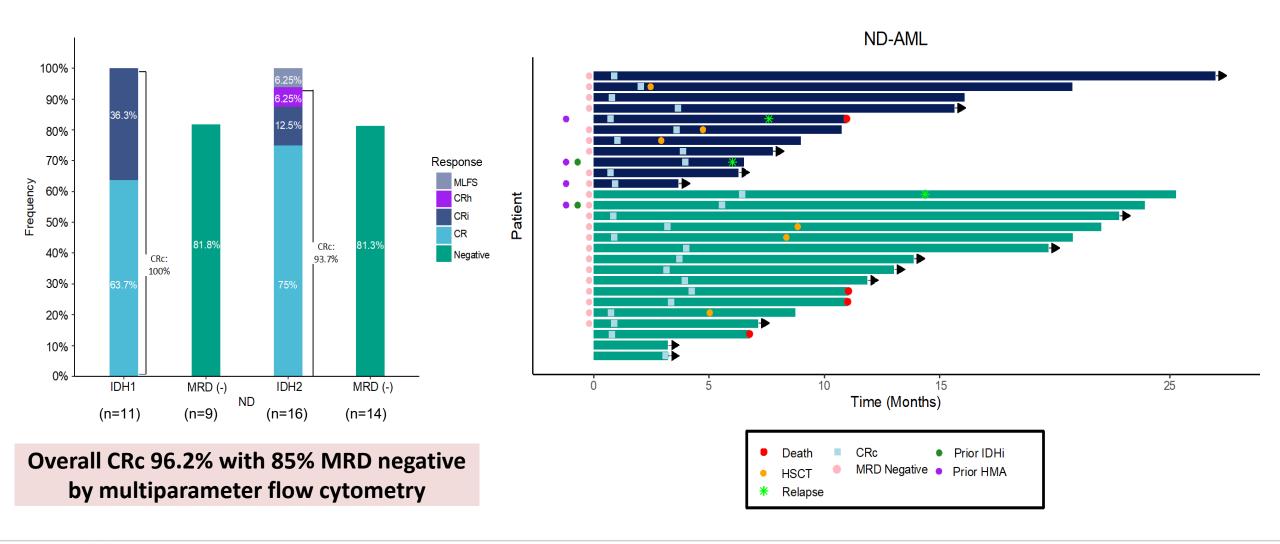
Objectives

Primary Objectives

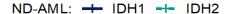

- Phase I: Safety and tolerability and RP2D of ASTX727 and VEN in combination with either IVO (Arm A) or ENA (Arm B) for patients with AML
- Phase II: Composite remission rate (CR, CRh and CRi)

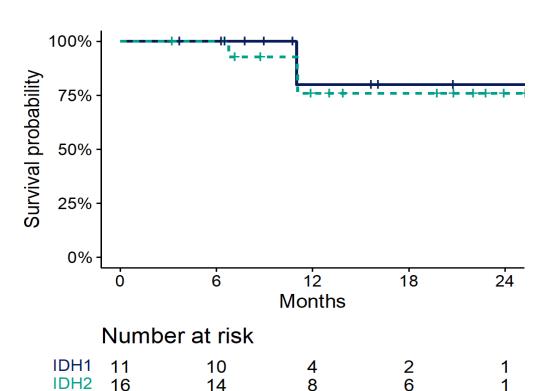

Secondary Objectives

- DOR, EFS, OS, ORR (CR, CRh, CRi, MLFS, PR)
- MRD negativity by flow

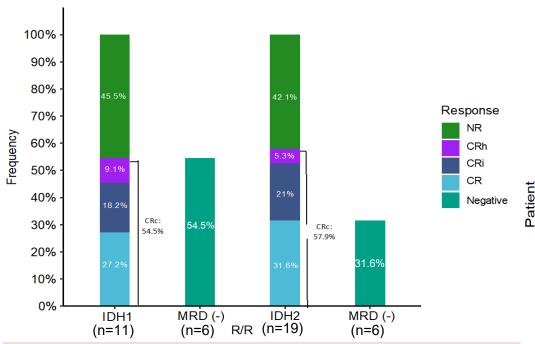

Treatment Schema

IDH1 or IDH2 mutated AML

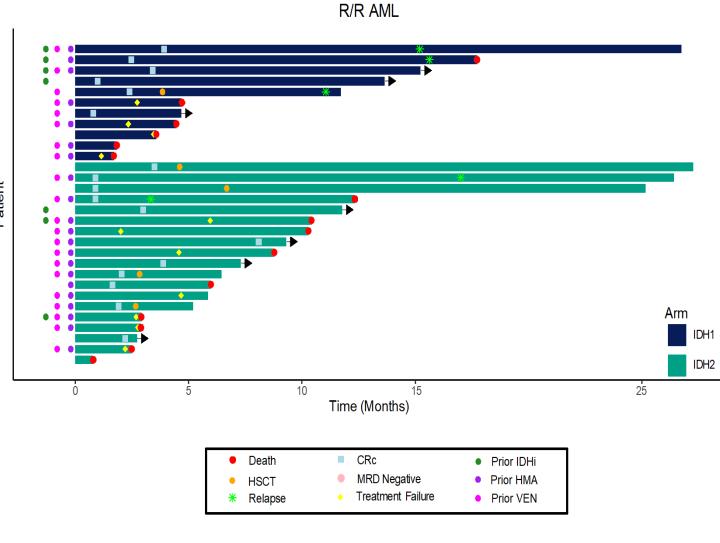



CRc Rates in ND-AML

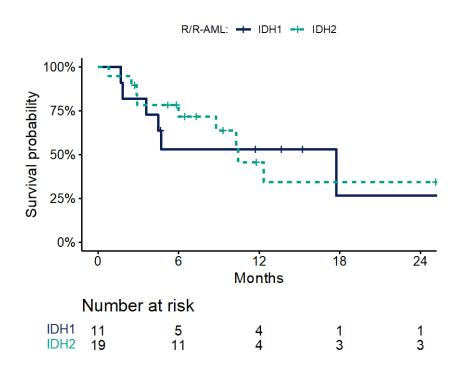
OS and DOR in ND-AML


Overall Survival

ND-AML			
Outcome IDH1 IDH2 (months) (n=11) (n=16)			
Median DOR	NR (6.88-NR)	NR (10.1-NR)	
Median OS	NR	NR	


CRc Rates in R/R AML

*Overall CRc 56.6% with 70.5% MRD negative by multiparameter flow cytometry.


*CRc of 47.6% in those who received prior VEN (n=21), 77.7% in those VEN naïve (n=9) and 71% in those with prior IDHi (n=7)

*MRD (-) CRc of 78% in those who were VEN naive

OS and DOR in RR-AML

Overall Survival

R/R-AML			
Outcome (months)	IDH1 (n=11)	IDH2 (n=19)	
Median DOR	13.8 (13.2-NR)	16.1 (NR-NR)	
Median OS	17.7 (4.47-NR)	10.4 (8.78 – NR)	

	Outcomes by Prior therapy			
Prior VEN VEN Naïve Prior IDHi TP53 Mut (n=21) (n=9) (n=7) (n=10)				
Median DOR	14.5 (14.5 –NA)	13.2 (NR-NR)	13.8 (13.16 – NR)	13.2 (NR-NR)
Median OS	10.4 (4.7 – NR)	17.7 (5.99-NR)	17.7 (10.4-NR)	4.59 (2.93 -NR)

Adverse Events

Adverse Events			
	Grade 1/2	Grade 3/4	
Febrile Neutropenia	-	27 (47)	
Hyperbilirubinemia*	7 (12)	3 (5)	
Mucositis**	5 (9)	2 (3)	
GI Toxicity	12 (21)	1 (2)	
ALT/AST Elevation	17 (29)	1 (2)	
Creatinine Elevation	16 (28)	-	
Electrolyte abnormalities	12 (21)	-	

^{*}Related to known inhibition of UGT1A1 by enasidenib

Adverse Events of Special Interest			
Adverse Event IDH1 IDH2 (n=35)			
Tumor Lysis	1 (5)	1 (3)	
DS	3 (14)	2 (6)	

Mortality			
Mortality ND-AML RR-AML			
30 Day Mortality	0%	3.3%	
60 Day Mortality	0%	6.6%	

Cycle Lengths			
ND-AML R/R AML			
Cycle 1	36 (23-72)	36 (23-92)	
Cycle 2	35 (28-76)	48(28-88)	
Cycle 3	40 (28-75)	36 (28 – 68)	

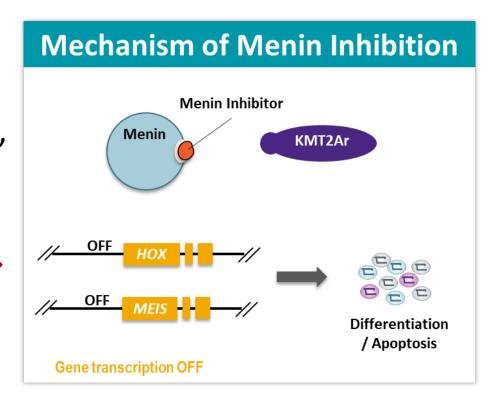
^{*}Medians reported in days (range)

^{**1} case attributed to hydroxyurea use

Conclusions

- Safety profile and tolerability of triplet combination of ASTX727 + VEN + IDHi in both ND and R/R AML is acceptable
- CRc rates of 96.2% (ND-AML) and 56.6% (RR-AML) with high rates of MRD-negativity
- Median OS NR for ND-AML; mOS 17.7 and 10.4 months for IDH1 and IDH2 RR-AML respectively
- Future randomized trials are being planned

Early Results of the Phase I/II Study Investigating the All-Oral Combination of the Menin Inhibitor Revumenib (SNDX-5613) with Decitabine/Cedazuridine (ASTX727) and Venetoclax in Acute Myeloid Leukemia (SAVE)


Ghayas C. Issa¹, Branko Cuglievan², Courtney D. DiNardo¹, Nicholas J. Short¹, David McCall², Amber Gibson², Cesar Nunez², Miriam B. Garcia², Michael Roth², Aram Bidikian¹, Allison Pike¹, Sheila Tan¹, Brianna Kammerer¹, Musa Yilmaz¹, Tapan M. Kadia¹, Naveen Pemmaraju¹, Maro Ohanian¹, Naval Daver¹, Elias Jabbour¹, Gautam Borthakur¹, Farhad Ravandi¹, Guillermo Garcia-Maner¹, Michael Andreeff¹ and Hagop M. Kantarjian¹

¹Department of Leukemia, ²Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX

Introduction – Menin Inhibition

- Menin-KMT2A interaction is a dependency in KMT2Ar or NUP98r or NPM1mt leukemias^{1,2,3}
- Revumenib (previously SNDX-5613), is a potent, oral, selective inhibitor of the menin–KMT2A interaction
 - R/R KMT2Ar or NPM1mt: ORR 53%, CR/CRh 30% →
 MRD-neg 78%⁴
- Need to improve chances of responses and decrease risk of relapse

SAVE Phase 1/2 Study Design

- Age ≥12 years
- R/R AML or Myeloid MPAL
- KMT2Ar or NPM1mt or NUP98r
- ECOG ≤2
- Adequate organ function

Revumenib (SNDX-5613)

DL-0: 113 mg

DL-1: 163 mg (**RP2D of monotherapy**)

PO Q12h D1-D28 + a strong CYP3A4i

ASTX727

1 tablet (35 mg decitabine and 100 mg cedazuridine) PO daily for D1-D5

Venetoclax

400 mg target dose* with ramp up
PO D1-D14
*adjusted with azoles

D14 bone marrow for early response

Primary objectives:

- Phase 1 (3+3 design)
 Safety, MTD and RP2D
- Phase 2Efficacy

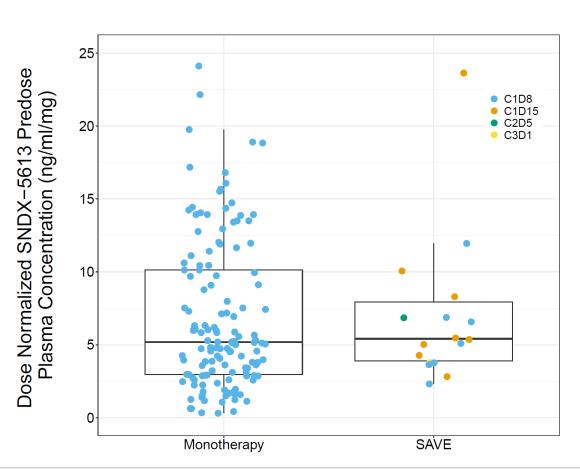
Secondary objectives:

Phase 2
 OS, RFS, CRD, MRD

Maintenance revumenib post-HSCT for 1 year

Baseline Characteristics - Ph1 SAVE

Characteristic	N = 9		
Median age, years [range]	30 [12-63]	Co-occurring mutations, n (%)
12-18 years, n (%)	3 (33%)	WT1	4 (44%)
Female, n (%)	7 (78%)	RAS	3 (33%)
BM Blasts, % [range]	24 [4-45]	IDH2	2 (22%)
AML, n (%)	8 (89%)	FLT3	1 (11%)
MPAL, n (%)	1 (11%)	Previous therapies	
Medullary and extramedullary	1 (11%)	Median no. [range]	3 [1-5]
Therapy-related AML	2 (22%)	Venetoclax, n (%)	5 (55%)
Genotype, n (%)		Menin inhibitor, n (%)	1 (11%)
KMT2Ar	5 (56%)	HSCT, n (%)	6 (67%)
NUP98r	3 (33%)	Data Cutoff 11/01/2023	
NPM1mt	1 (11%)		


PK Analysis – Ph1 SAVE

The dose-normalized, steady-state plasma concentrations of revumenib (SNDX-5613) in SAVE are comparable to monotherapy (both with strong CYP3A4i)

	Monotherapy	SAVE
N	137	18
Mean	7.11	8.05
(SD)	(6.09)	(7.19)
Median	5.18	5.41
(min, max)	(0.30, 45.89)	(2.31, 29.26)
Geomean	5.05	6.28
(%CV)	(85.7%)	(89.3%)

The geomean of SAVE samples is higher, but exposures were overlapping and within the patient variability. All patients included in this analysis received strong CYP3A4 inhibitors (azoles).

Patient Disposition—Ph1 SAVE

No discontinuations for treatment-related AEs, 5 received HSCT consolidation

Patient Disposition, n (%)	N = 9
Ongoing patients	5 (56%)
Ongoing response without HSCT	1 (11%)
Off treatment during HSCT	2 (18%)
On maintenance post-HSCT	2 (22%)
HSCT	5 (56%)
Progression	1 (11%)
Death (unrelated)	2 (22%) Sepsis ARDS post-HSCT
Adverse event (unrelated)	1 (11%)
Treatment-related adverse event	O Data Cutoff 11/01/2023

Adverse Events – Ph1 SAVE

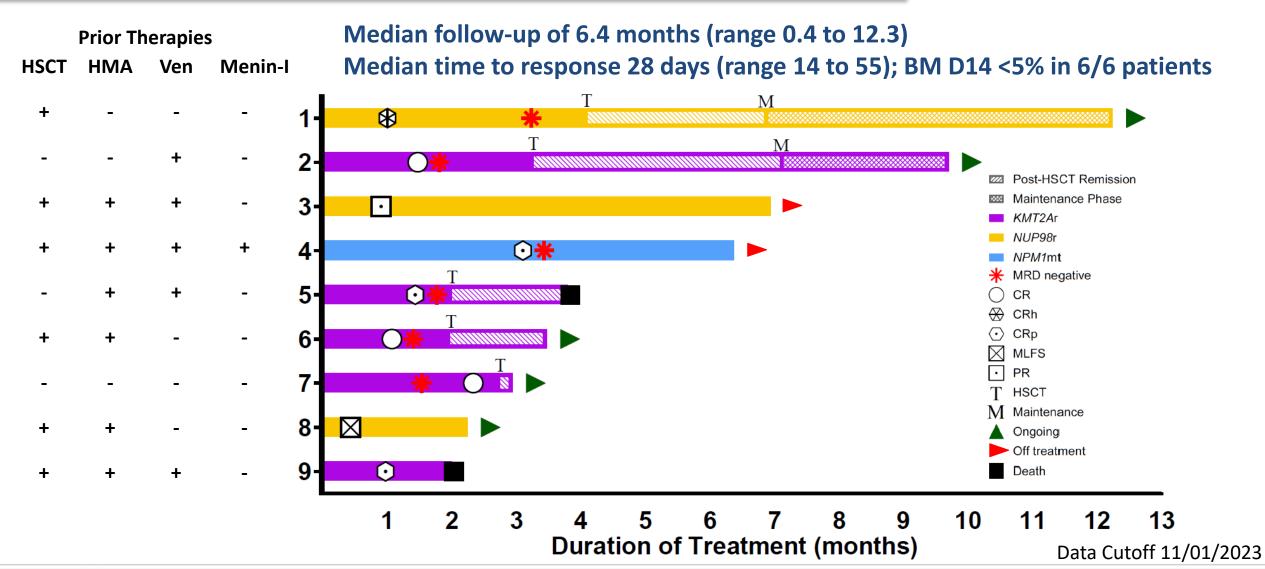
Data Cutoff 11/01/2023

TEAEs (any grade, ≥20%)	N = 9	TRAEs (≥Grade 3)	N = 9	
Febrile neutropenia	5 (56%)	Febrile neutropenia	5 (56%)	_
Nausea	5 (56%)	Neutropenia	2 (22%)	
Hyperphosphatemia	5 (56%)	Thrombocytopenia	2 (22%)	
Vomiting	4 (44%)	Lung infection	2 (22%)	
QTc prolongation	3 (33%)	TRAEs (Grades 1-2)		_
Hypokalemia	3 (33%)	Nausea	5 (56%)	_
Thrombocytopenia	2 (22%)	Hyperphosphatemia	5 (56%)	
Neutropenia	2 (22%)	Vomiting	4 (44%)	
Elevated ALT/AST	2 (22%)	QT prolongation	3 (33%)	No Grade 3 or higher 个QTc
Lung infection	2 (22%)	Differentiation syndrome	2 (22%)	Leukocytosis in 1 patient
Abdominal pain	2 (22%)	TRAEs: treatment-related adverse event	. Related to any	-
TEAEs: treatment emergent adverse eve	ent regardless of	of the agents used.		-

attribution.

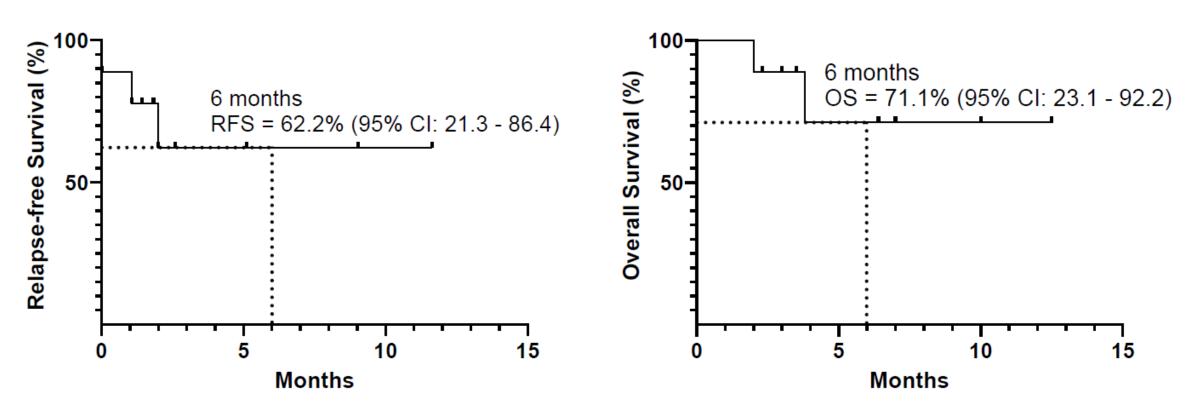
High response rate with SAVE combination

Best Response n (%)	All patients (N = 9)	<i>KMT2Ar</i> (N=5)	<i>NUP98r</i> (N=3)	<i>NPM1mt</i> (N=1)
ORR	9 (100%)	5 (100%)	3 (100%)	1 (100%)
CR/CRh	4 (44%)	3 (60%)	1 (33%)	0
CR	3 (33%)	3 (60%)	0	0
CRh	1 (11%)	0	1 (33%)	0
CRp	3 (33%)	2 (40%)	0	1 (100%)
PR	1 (11%)	0	1 (33%)	0
MLFS	1 (11%)	0	1 (33%)	0
MRD neg by MFC	6/9 (67%)	4/5 (80%)	1/3 (33%)	1/1 (100%)
Within CR/CRh	4/4 (100%)	3/3 (100%)	1/1 (100%)	1/1 (100%)
Complete cytogenetic remission by FISH	5/8 (63%)	4/5 (80%)	1/3 (33%)	NA


Overall Response Rate (ORR) = CR + CRh + CRp + PR + MLFS. Complete cytogenetic remission in which fusions were not detectable by fluorescence in situ hybridization (FISH).

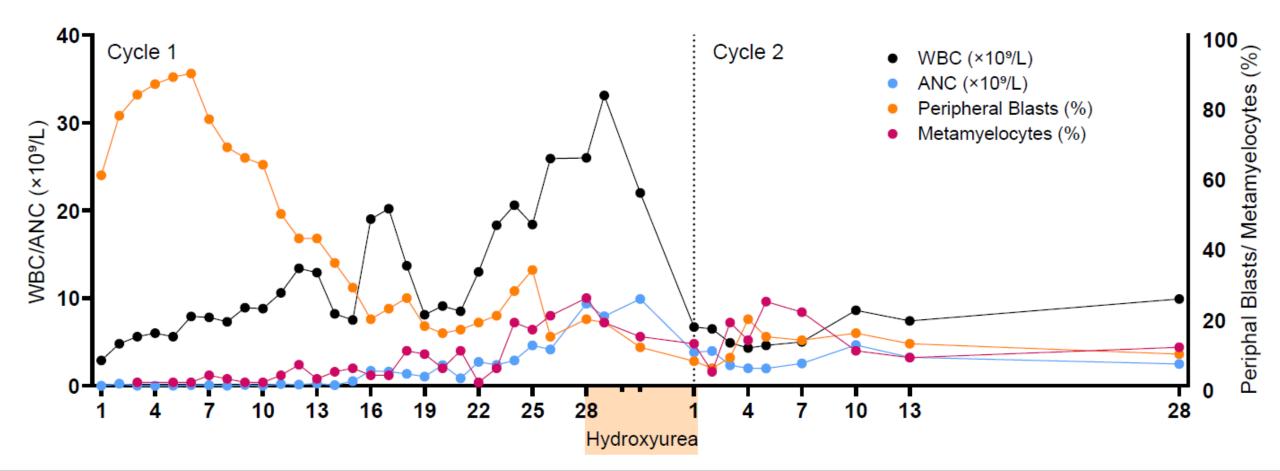
Data Cutoff 11/01/2023

SAVE leads to rapid responses in refractory cases



SAVE early results indicate durable remissions

Median follow-up of 6.4 months (range 0.4 to 12.3) (N=9)


Median RFS and OS not reached with 2 patients having ongoing remission beyond 11 months

Data Cutoff 11/01/2023

Differentiation Syndrome on SAVE

Asymptomatic leukocytosis with hallmarks of differentiation in *NUP98r* BM Blasts 66% → 8% with platelet count recovery (PR)

Conclusions

- Early results of all-oral SAVE [revumenib (SNDX-5613), oral decitabine (ASTX727) and VEnetoclax] → acceptable safety and high efficacy in children and adults with R/R AML susceptible to menin inhibition
- High rates of response in heavily pretreated population
 - ORR 100% (9/9), CR/CRh 44% (4/9), MRD-neg 67% (6/9)
 - 5/9 patients HSCT consolidation, 2 resumed revumenib maintenance with ongoing remission > 11 months
- No severe differentiation syndrome or ≥Grade 3 QT prolongation
- Myelosuppression, confounded by expected risk with HMA + Ven in R/R AML
 - Future mitigation measures to include intermittent revumenib dosing, without compromising efficacy given clearance of leukemia by day 14
- This study continues to accrue patients

Phase I/II Study of Quizartinib, Venetoclax, and Decitabine Triple

Combination in FLT3-ITD Mutated AML

Musa Yilmaz, Muharrem Muftuoglu, Hagop Kantarjian, Courtney DiNardo, Tapan Kadia, Marina Konopleva, Gautam Borthakur, Naveen Pemmaraju, Nicholas J. Short, Yesid Alvarado, Abhishek Maiti, Lucia Masarova, Guillermo Montalban-Bravo, Carissa Jurisprudencia, Allison Pike, Sanam Loghavi, Keyur Patel, Guillin Tang, Jairo Matthews, Steven Kornblau, Elias Jabbour, Guillermo Garcia-Manero, Farhad Ravandi, Michael Andreeff, Naval Daver

Department of Leukemia, MD Anderson Cancer Center Houston, Texas, USA

DAC + VEN + Quizartinib in FLT-ITD mutated AML

Primary Objective:

• To establish RP2D of quizartinib in combination with DAC + VEN in pts with FLT3m AML

Secondary Objective:

• To determine complete remission (CR), CR with incomplete count recovery (CRi), minimal residual disease (MRD), and overall survival (OS)

Patients

•Relapsed/Refractory FLT3-mutated* AML or high-risk MDS (≥10% blasts)

or

Newly diagnosed FLT3-mutated*AML unfit for intensive chemoRx

<u>Induction</u>

Decitabine 20 mg/m² IV on D1-10

Venetoclax** 400 mg/day D1-D21 (BM biopsy on D14)

Quizartinib 30-40 mg/day on D1-28#

Consolidation

Decitabine 20 mg/m² IV on D1-5

Venetoclax*** 400 mg/day D1-D14

Quizartinib 30-40 mg/day on D1 to 28

Up to 12 cycles. ***Venetoclax duration reduced to 14 > 10 >7 days in subsequent cycles for pts in CR based on count recovery durations. Quizartinib dose reduced to 14 days in pts with prolonged count recovery

^{*}FLT3-ITD with/without TKD mutations allowed

^{**}Venetoclax discontinued on D14 in pts with BM blasts ≤5% or hypoplastic BM

Amondment - reduced quizortinib to 14 days

^{*}Amendment - reduced quizartinib to 14 days in C1

Baseline Clinical Characteristics

Characteristics	Relapse/Refractory (N=43)	Frontline (N=14)
Onaracteristics	N (%), Median [Range]	N (%), Median [Range]
Age-years	59 [19-86]	70 [62-85]
Gender- Male	26 (60)	7 (50)
Diagnosis, AML		
De novo	31 (72)	6 (43)
Secondary	9 (21)	6 (43)
Therapy related	3 (7)	2 (14)
Prior therapies, median	3 [1-5]	n/a
HMA + VEN	24 (56)	n/a
≥1 prior FLT3i	36 (83)	n/a
≥ 2 prior FLT3i	9 (23)	n/a
Prior Gilteritinib	21 (74)	n/a
ASCT, yes	16 (37)	n/a
Karyotype		
Diploid	17 (40)	8 (56)
Adverse	13 (30)	3 (22)
Other	13 (30)	3 (22)

Baseline Molecular Characteristics

Characteristics	Relapse/Refractory (N=43)	Frontline (N=14)
	N (%), Median [Range]	N (%), Median [Range]
FLT3 mutations		
ITD	43 (100)	14 (100)
ITD allelic ratio	0.45 [0.01-23]	0.44 [0.19-4.04]
ITD + D835	1 (2)	0 (0)
ITD + F691L	1 (2)	0 (0)
Other mutations*		
DNMT3A	19 (44)	4 (29)
NPM1	13 (30)	3 (21)
WT1	17 (40)	1 (7)
RAS/MAPK	12 (28)	1 (7)
RUNX1	11 (25)	5 (35)
TET2	10 (23)	3 (21)
SRSF2	2 (5)	3 (21)

⁻¹ pt with no baseline molecular data excluded from molecular subcategory, mutations with >20% incidence in R/R or frontline cohort are shown *RAS/MAPK pathway mutations: RAS/PTPN11/CBL/NF1/BRAF

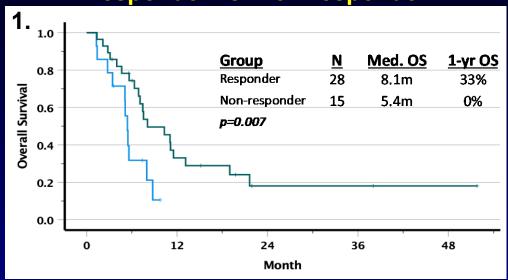
n/N (%)

R/R cohort - Response Rates

Response*, N (%)	All Patients (n=43)		
CRc	28 (65)		
CR	5 (12)		
CRi	8 (19)		
MLFS	15 (34)		
Day 14 BM blasts ≤5%¥	18 (42)		
Best MRD, anytime			
Flow Cytometry (-)	8/27 (30)		
FLT3 PCR (-)	9/25 <mark>(36)</mark>		
30-day mortality	0 (0)		
60-day mortality	<u>3 (7)</u>		
Bridge to ASCT	17 (40)		

Prior Gilteritinib	20/32 (63)
No Prior Gilteritinib	8/11 (72)
Prior HMA + VEN	14/24 (58)
No Prior HMA + VEN	14/19 (74)
RAS/MAPK* positive	6/12 (50)
RAS/MAPK negative	22/30 (73)
DNMT3A positive	14/20 (70)
DNMT3A negative	14/22 (64)
NPM1 positive	10/13 (77)
NPM1 negative	18/29 (62)

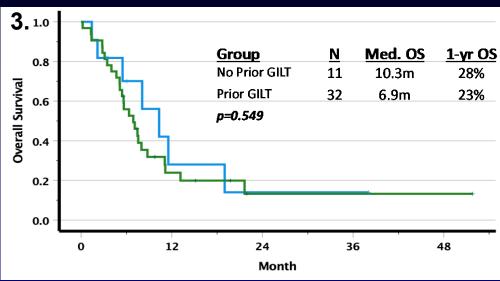
CRc Rates in Subgroups

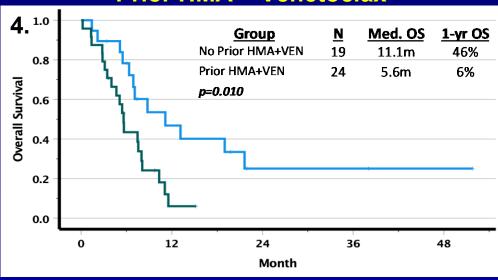

^{*}Response assessment by modified IWG criteria – Cheson et al. J Clin Oncol. 2003 Dec 15;21(24):4642-9 *Including acellular or aplastic bone marrow

⁻¹ pt with no baseline molecular data excluded from molecular subcategory

^{*}RAS/MAPK pathway mutations: RAS/PTPN11/CBL/NF1/BRAF

Relapse/Refractory cohort (Median OS 7.5m)


Responder vs. Non-responder

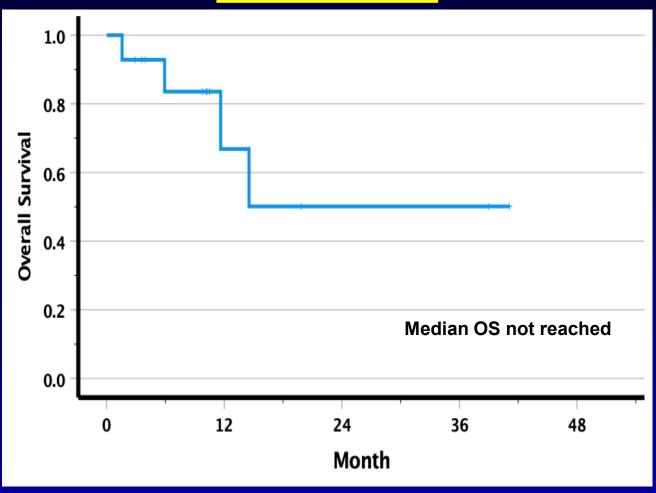

CR, CRi, MLFS vs. Non-responder

Prior Gilteritinib

Prior HMA + Venetoclax

Frontline Cohort - Response Rates

Response*, N (%)	All Patients (N=14)
CRc	14 (100)
CR	11 (79)
CRi	3 (21)
MLFS	0 (0)
Day 14 BM blasts ≤5%¥	14 (100)


Response*, N (%)	All Patients (N=14)
Best MRD, anytime	
Flow Cytometry (-)	9/12 (75)
FLT3 PCR (-)	12/14 (86)
30-day mortality	0 (0)
60-day mortality	<u>1 (7)</u>
Bridge to ASCT	4 (19)

^{*}Response assessment by modified IWG criteria – Cheson et al. J Clin Oncol. 2003 Dec 15;21(24):4642-9

[¥]Including acellular or aplastic bone marrow

Frontline Cohort

Overall Survival

Median follow-up: 11 months

Last follow-up

2 relapses:

- 1 TP53, complex (FLT3-)
- ➤ 1 MECOM (FLT3-)

4 deaths:

- 2 deaths in CR (1 post-SCT)
- 2 deaths after relapse

10 alive:

- > All in CR
 - 2 post-SCT
 - 8 no SCT, on Rx

Adverse Events (all patients)

Non-hematological	Grade 3-5	Grade 1-2
Febrile Neutropenia	26 (42)	1 (2)
Lung infection	22 (35)	0 (0)
Infection - other	10 (16)	6 (10)
Sepsis	6 (10)	0 (0)
Hypermagnesemia	2 (3)	8 (13)
Syncope	2 (3)	0 (0)
Hyperbilirubinemia	2 (3)	18 (29)
Hypocalcemia	1 (2)	33 (53)
Hypokalemia	0 (0)	37 (60)
Hyponatremia	0 (0)	34 (55)
Dyspnea	0 (0)	26 (42)
Diarrhea	0 (0)	26 (42)
Hypophosphatemia	0 (0)	26 (42)
Hypoalbuminemia	0 (0)	25 (40)
Hypomagnesemia	0 (0)	19 (31)
QTcF Prolongation	1 (2)	6 (10)

A total of 62 patients were evaluated for toxicity (including 5 patients who were not evaluable for response). Only grade 3-5 (=/>5%) and grade 1-2 (=/ >30%) frequencies are shown (except QTcF, and overlapping toxicities between groups).

Prolonged Myelosuppression

Frontline Cohort (N=14)

Quizartinib D1-D28 in C1 6 patients: 3CR, 3CRi

Median time to ANC >500: 43 days [36-56 d] Median time to PLT >50K: 42 days [21-46 d]

Û

Reduced Quizartinib to D1-D14 in C1 8 patients: 8CR

Median time to ANC >500: 36 days [28-41 d] Median time to PLT >50K: 35 days [27-71 d]

Conclusion

- DAC + VEN + Quizartinib is active in heavily pretreated pts R/R FLT3-ITDm pts
 - All patients CRc 65%, med OS 7.5 m, 1-yr OS 25%
 - Prior Gilteritinib CRc 63%, med OS 6.9m, 1-yr OS 23%
- High remission rates in newly diagnosed FLT3-ITDm
 - CRc 100% (CR 79%), med OS not reached (median f/u 11m)
- Delayed ANC recovery can be mitigated by reducing VEN and Quizartinib to 14 days
 - Time to ANC recovery (500 cells/mcL) 43 days to 36 days
- Grade 3 QTcF prolongation is uncommon (2%)
- This clinical trial continuous to accrue and expansion planned (NCT03661307)

Conclusions

Thank you!!!

Contact: lachowie@ohsu.edu